26 research outputs found

    The minimum of the time-delay wavefront error in Adaptive Optics

    Full text link
    An analytical expression is given for the minimum of the time-delay induced wavefront error (also known as the servo-lag error) in Adaptive Optics systems under temporal prediction filtering. The analysis is based on the von K\'arm\'an model for the spectral density of refractive index fluctuations and the hypothesis of frozen flow. An optimal, temporal predictor can achieve up to a factor 1.77 more reduction of the wavefront phase variance compared to the zero-order prediction strategy, which is commonly used in Adaptive Optics systems. Alternatively, an optimal predictor can allow for a 1.41 times longer time-delay to arrive at the same residual phase variance. Generally, the performance of the optimal, temporal predictor depends on the very product of time-delay, wind speed and the reciprocal of turbulence outer scale.Comment: 10 pages, 5 figure

    Impact of time-variant turbulence behavior on prediction for adaptive optics systems

    Get PDF
    For high contrast imaging systems, the time delay is one of the major limiting factors for the performance of the extreme adaptive optics (AO) sub-system and, in turn, the final contrast. The time delay is due to the finite time needed to measure the incoming disturbance and then apply the correction. By predicting the behavior of the atmospheric disturbance over the time delay we can in principle achieve a better AO performance. Atmospheric turbulence parameters which determine the wavefront phase fluctuations have time-varying behavior. We present a stochastic model for wind speed and model time-variant atmospheric turbulence effects using varying wind speed. We test a low-order, data-driven predictor, the linear minimum mean square error predictor, for a near-infrared AO system under varying conditions. Our results show varying wind can have a significant impact on the performance of wavefront prediction, preventing it from reaching optimal performance. The impact depends on the strength of the wind fluctuations with the greatest loss in expected performance being for high wind speeds.Comment: 10 pages, 8 figures; Accepted to JOSA A March 201

    Extremely fast focal-plane wavefront sensing for extreme adaptive optics

    Full text link
    We present a promising approach to the extremely fast sensing and correction of small wavefront errors in adaptive optics systems. As our algorithm's computational complexity is roughly proportional to the number of actuators, it is particularly suitable to systems with 10,000 to 100,000 actuators. Our approach is based on sequential phase diversity and simple relations between the point-spread function and the wavefront error in the case of small aberrations. The particular choice of phase diversity, introduced by the deformable mirror itself, minimizes the wavefront error as well as the computational complexity. The method is well suited for high-contrast astronomical imaging of point sources such as the direct detection and characterization of exoplanets around stars, and it works even in the presence of a coronagraph that suppresses the diffraction pattern. The accompanying paper in these proceedings by Korkiakoski et al. describes the performance of the algorithm using numerical simulations and laboratory tests.Comment: SPIE Paper 8447-7

    Focal-plane wavefront sensing with high-order adaptive optics systems

    Full text link
    We investigate methods to calibrate the non-common path aberrations at an adaptive optics system having a wavefront-correcting device working at an extremely high resolution (larger than 150x150). We use focal-plane images collected successively, the corresponding phase-diversity information and numerically efficient algorithms to calculate the required wavefront updates. The wavefront correction is applied iteratively until the algorithms converge. Different approaches are studied. In addition of the standard Gerchberg-Saxton algorithm, we test the extension of the Fast & Furious algorithm that uses three images and creates an estimate of the pupil amplitudes. We also test recently proposed phase-retrieval methods based on convex optimisation. The results indicate that in the framework we consider, the calibration task is easiest with algorithms similar to the Fast & Furious.Comment: 11 pages, 7 figures, published in SPIE proceeding

    Calibrating a high-resolution wavefront corrector with a static focal-plane camera

    Full text link
    We present a method to calibrate a high-resolution wavefront-correcting device with a single, static camera, located in the focal plane; no moving of any component is needed. The method is based on a localized diversity and differential optical transfer functions (dOTF) to compute both the phase and amplitude in the pupil plane located upstream of the last imaging optics. An experiment with a spatial light modulator shows that the calibration is sufficient to robustly operate a focal-plane wavefront sensing algorithm controlling a wavefront corrector with ~40 000 degrees of freedom. We estimate that the locations of identical wavefront corrector elements are determined with a spatial resolution of 0.3% compared to the pupil diameter.Comment: 12 pages, 12 figures, accepted for publication in Applied Optic

    Robustness of prediction for extreme adaptive optics systems under various observing conditions: An analysis using VLT/SPHERE adaptive optics data

    Full text link
    For high-contrast imaging (HCI) systems, such as VLT/SPHERE, the performance of the system at small angular separations is contaminated by the wind-driven halo in the science image. This halo is a result of the servo-lag error in the adaptive optics (AO) system due to the finite time between measuring the wavefront phase and applying the phase correction. One approach to mitigating the servo-lag error is predictive control. We aim to estimate and understand the potential on-sky performance that linear data-driven prediction would provide for VLT/SPHERE under various turbulence conditions. We used a linear minimum mean square error predictor and applied it to 27 different AO telemetry data sets from VLT/SPHERE taken over many nights under various turbulence conditions. We evaluated the performance of the predictor using residual wavefront phase variance as a performance metric. We show that prediction always results in a reduction in the temporal wavefront phase variance compared to the current VLT/SPHERE AO performance. We find an average improvement factor of 5.1 in phase variance for prediction compared to the VLT/SPHERE residuals. When comparing to an idealised VLT/SPHERE, we find an improvement factor of 2.0. Under our 27 different cases, we find the predictor results in a smaller spread of the residual temporal phase variance. Finally, we show there is no benefit to including spatial information in the predictor in contrast to what might have been expected from the frozen flow hypothesis. A purely temporal predictor is best suited for AO on VLT/SPHERE

    Optimal and Robust Feedback Controller Estimation for a Vibrating Plate using Subspace Model Identification

    Get PDF
    This paper presents a method to estimate the H2 optimal and a robust feedback controller by means of Subspace Model Identification using the internal model control (IMC) approach. Using IMC an equivalent feed forward control problem is obtained, which is solved by the Causal Wiener filter for the H2 optimal controller. The robust variant, called the Cautious Wiener filter, optimizes the average performance w.r.t. probabilistic model errors. The identification of the Causal and Cautious Wiener filters are control-relevant. The method is illustrated by experiments on a 4-inputs 4-outputs vibrating plate with additional mass variation

    Pre-correction Adaptive Optics performance of a 10 km Laser Link

    Get PDF
    For the next generation of very high throughput communication satellites, free-space optical (FSO) communication between ground stations and geostationary telecommunication satellites is likely to replace conventional RF links. To mitigate atmospheric turbulence, TNO and DLR propose Adaptive Optics (AO) to apply uplink pre-correction. In order to demonstrate the feasibility of AO pre-correction an FSO link has been tested over a 10 km range. This paper shows that AO pre-correction is most advantageous for low point ahead angles (PAAs), as expected. In addition, an optimum AO precorrection performance is found at 16 AO modes for the experimental conditions. For the specific test site, tip-tilt precorrection accounted for 4.5 dB improvement in the link budget. Higher order AO modes accounted for another 1.5 dB improvement in the link budget. From these results it is concluded that AO pre-correction can effectively improve highthroughput optical feeder links

    Recent progress in the upgrade of the TCV EC-system with two 1MW/2s dual-frequency (84/126GHz) gyrotrons

    Get PDF
    The upgrade of the EC-system of the TCV tokamak has entered in its realization phase and is part of a broader upgrade of TCV. The MW-class dual-frequency gyrotrons (84 or 126GHz/2s/1MW) are presently being manufactured by Thales Electron Devices with the first gyrotron foreseen to be delivered at SPC by the end of 2017. In parallel to the gyrotron development, for extending the level of operational flexibility of the TCV EC-system the integration of the dual-frequency gyrotrons adds a significant complexity in the evacuated 63.5mm-diameter HE11 transmission line system connected to the various TCV low-field side and top launchers. As discussed in [1], an important part of the present TCV-upgrade consists in inserting a modular closed divertor chamber. This will have an impact on the X3 top-launcher which will have to be reduced in size. For using the new compact launcher we are considering employing a Fast Directional Switch (FADIS), combining the two 1MW/126GHz/2s rf-beams into a single 2MW rf-beam
    corecore